Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol J ; 19(4): e2400006, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38581090

RESUMO

The melon (Cucumis melo L.) is a globally cherished and economically significant crop. The grafting technique has been widely used in the vegetative propagation of melon to promote environmental tolerance and disease resistance. However, mechanisms governing graft healing and potential incompatibilities in melons following the grafting process remain unknown. To uncover the molecular mechanism of healing of grafted melon seedlings, melon wild type (Control) and TRV-CmGH9B3 lines were obtained and grafted onto the squash rootstocks (C. moschata). Anatomical differences indicated that the healing process of the TRV-CmGH9B3 plants was slower than that of the control. A total of 335 significantly differentially expressed genes (DEGs) were detected between two transcriptomes. Most of these DEGs were down-regulated in TRV-CmGH9B3 grafted seedlings. GO and KEGG analysis showed that many metabolic, physiological, and hormonal responses were involved in graft healing, including metabolic processes, plant hormone signaling, plant MAPK pathway, and sucrose starch pathway. During the healing process of TRV-CmGH9B3 grafted seedlings, gene synthesis related to hormone signal transduction (auxin, cytokinin, gibberellin, brassinolide) was delayed. At the same time, it was found that most of the DEGs related to the sucrose pathway were down-regulated in TRV-CmGH9B3 grafted seedlings. The results showed that sugar was also involved in the healing process of melon grafted onto squash. These results deepened our understanding of the molecular mechanism of GH9B3, a key gene of ß-1, 4-glucanase. It also provided a reference for elucidating the gene mechanism and function analysis of CmGH9B3 in the process of graft union healing.


Assuntos
Cucumis melo , Cucurbita , Cucurbitaceae , Cucumis melo/genética , Cucumis melo/metabolismo , Perfilação da Expressão Gênica , Cucurbita/genética , Cucurbita/metabolismo , Cucurbitaceae/genética , Sacarose/metabolismo
2.
BMC Vet Res ; 20(1): 43, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38308297

RESUMO

BACKGROUND: Bovine viral diarrhea (BVD) is an acute febrile infectious disease caused by the bovine viral diarrhea virus (BVDV), which has brought huge economic losses to the world's cattle industry. At present, commercial inactivated BVDV vaccines may cause some adverse reactions during use. This study aims to develop a safer and more efficient inactivated BVDV vaccine. METHODS: Here, we described the generation and preclinical efficacy of a hydrogen peroxide (H2O2) inactivated BVDV type 1 vaccine in mice, and administered it separately with commercial vaccine (formaldehyde inactivated) in mice to study its efficacy. RESULTS: The BVDV type 1 IgG, IFN- γ, IL-4 and neutralizing antibody in the serum of the H2O2 inactivated vaccine group can be maintained in mice for 70 days. The IgG level reached its maximum value of 0.67 on the 42nd day, significantly higher than the commercial formaldehyde inactivated BVDV type 1 vaccine. IFN- γ and IL-4 reached their maximum values on the 28th day after immunization, at 123.16 pg/ml and 143.80 pg/ml, respectively, slightly higher than commercial vaccines, but the effect was not significant. At the same time the BVDV-1 neutralizing antibody titer reached a maximum of 12 Nu on the 42nd day post vaccination. CONCLUSIONS: The H2O2 inactivated BVDV vaccine has good safety and immunogenicity, which provides a potential solution for the further development of an efficient and safe BVDV vaccine.


Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina , Doenças dos Bovinos , Vírus da Diarreia Viral Bovina Tipo 1 , Vírus da Diarreia Viral Bovina , Vacinas Virais , Animais , Bovinos , Camundongos , Anticorpos Neutralizantes , Anticorpos Antivirais , Diarreia/veterinária , Formaldeído , Peróxido de Hidrogênio , Imunoglobulina G , Interleucina-4 , Vacinas de Produtos Inativados
3.
Nucleic Acids Res ; 52(D1): D690-D700, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37897361

RESUMO

The Animal Meta-omics landscape database (AnimalMetaOmics, https://yanglab.hzau.edu.cn/animalmetaomics#/) is a comprehensive and freely available resource that includes metagenomic, metatranscriptomic, and metaproteomic data from various non-human animal species and provides abundant information on animal microbiomes, including cluster analysis of microbial cognate genes, functional gene annotations, active microbiota composition, gene expression abundance, and microbial protein identification. In this work, 55 898 microbial genomes were annotated from 581 animal species, including 42 924 bacterial genomes, 12 336 virus genomes, 496 archaea genomes and 142 fungi genomes. Moreover, 321 metatranscriptomic datasets were analyzed from 31 animal species and 326 metaproteomic datasets from four animal species, as well as the pan-genomic dynamics and compositional characteristics of 679 bacterial species and 13 archaea species from animal hosts. Researchers can efficiently access and acquire the information of cross-host microbiota through a user-friendly interface, such as species, genomes, activity levels, expressed protein sequences and functions, and pan-genome composition. These valuable resources provide an important reference for better exploring the classification, functional diversity, biological process diversity and functional genes of animal microbiota.


Assuntos
Bases de Dados Genéticas , Microbiota , Multiômica , Animais , Bactérias/genética , Genoma Microbiano , Metagenoma/genética , Microbiota/genética
4.
Mol Cell Proteomics ; 23(1): 100686, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38008179

RESUMO

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide, ranking fourth in frequency. The relationship between metabolic reprogramming and immune infiltration has been identified as having a crucial impact on HCC progression. However, a deeper understanding of the interplay between the immune system and metabolism in the HCC microenvironment is required. In this study, we used a proteomic dataset to identify three immune subtypes (IM1-IM3) in HCC, each of which has distinctive clinical, immune, and metabolic characteristics. Among these subtypes, IM3 was found to have the poorest prognosis, with the highest levels of immune infiltration and T-cell exhaustion. Furthermore, IM3 showed elevated glycolysis and reduced bile acid metabolism, which was strongly correlated with CD8 T cell exhaustion and regulatory T cell accumulation. Our study presents the proteomic immune stratification of HCC, revealing the possible link between immune cells and reprogramming of HCC glycolysis and bile acid metabolism, which may be a viable therapeutic strategy to improve HCC immunotherapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Proteoma , Proteômica , Microambiente Tumoral , Ácidos e Sais Biliares
5.
Bioorg Chem ; 143: 107022, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38142558

RESUMO

Liver fibrosis remains a global health challenge due to its rapidly rising prevalence and limited treatment options. The orphan nuclear receptor Nur77 has been implicated in regulation of autophagy and liver fibrosis. Targeting Nur77-mediated autophagic flux may thus be a new promising strategy against hepatic fibrosis. In this study, we synthesized four types of Nur77-based thiourea derivatives to determine their anti-hepatic fibrosis activity. Among the synthesized thiourea derivatives, 9e was the most potent inhibitor of hepatic stellate cells (HSCs) proliferation and activation. This compound could directly bind to Nur77 and inhibit TGF-ß1-induced α-SMA and COLA1 expression in a Nur77-dependent manner. In vivo, 9e significantly reduced CCl4-mediated hepatic inflammation response and extracellular matrix (ECM) production, revealing that 9e is capable of blocking the progression of hepatic fibrosis. Mechanistically, 9e induced Nur77 expression and enhanced autophagic flux by inhibiting the mTORC1 signaling pathway in vitro and in vivo. Thus, the Nur77-targeted lead 9e may serve as a promising candidate for treatment of chronic liver fibrosis.


Assuntos
Antifibróticos , Tiossemicarbazonas , Humanos , Tiossemicarbazonas/metabolismo , Células Estreladas do Fígado , Fígado/metabolismo , Cirrose Hepática/metabolismo , Tioureia/metabolismo , Tetracloreto de Carbono
6.
PeerJ ; 11: e16294, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37868061

RESUMO

Ruminants such as cattle rely mainly on microbes in the rumen to digest cellulose and hemicellulose from forage, and the digestion products are mainly absorbed and utilized by the host in the form of short chain fatty acids (SCFAs). This study aimed to isolate acid-producing strains from the cattle rumen and investigate their functions. A total of 980 strains of acid-producing bacteria were isolated from cattle rumen contents using a medium supplemented with bromocresol green. Combined with the test of acid production ability and 16S rRNA amplicon sequencing technology, five strains were selected based on their ability to produce relatively high levels of acid, including Bacillus pumillus, Enterococcus hirae, Enterococcus faecium, and Bacillus subtilis. Sheep were treated by gavage with a mixed bacterial suspension. The results showed that mixed bacteria significantly increased the body weight gain and feed conversion rate of sheep. To investigate the function of acid-producing bacteria in sheep, we used 16S rDNA sequencing technology to analyze the rumen microbes of sheep. We found that mixed bacteria changed the composition and abundance of sheep rumen bacteria. Among them, the abundance of Bacteroidota, Actinobacteriota, Acidobacteriota, and Proteobacteria was significantly increased, and the abundance of Firmicutes was significantly decreased, indicating that the changes in gut microbiota changed the function of the sheep rumen. The acid-producing bacteria isolated in this study can effectively promote the growth of ruminants, such as cattle and sheep, and can be used as additives to improve breeding efficiency, which lays a foundation for subsequent research on probiotics.


Assuntos
Microbioma Gastrointestinal , Rúmen , Bovinos , Animais , Ovinos/genética , Rúmen/microbiologia , RNA Ribossômico 16S/genética , Bactérias/genética , Ruminantes/genética , Microbioma Gastrointestinal/genética
7.
Microbiome ; 11(1): 7, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36631912

RESUMO

BACKGROUND: As a domesticated species vital to humans, horses are raised worldwide as a source of mechanical energy for sports, leisure, food production, and transportation. The gut microbiota plays an important role in the health, diseases, athletic performance, and behaviour of horses. RESULTS: Here, using approximately 2.2 Tb of metagenomic sequencing data from gut samples from 242 horses, including 110 samples from the caecum and 132 samples from the rectum (faeces), we assembled 4142 microbial metagenome-assembled genomes (MAG), 4015 (96.93%) of which appear to correspond to new species. From long-read data, we successfully assembled 13 circular whole-chromosome bacterial genomes representing novel species. The MAG contained over 313,568 predicted carbohydrate-active enzymes (CAZy), over 59.77% of which had low similarity match in CAZy public databases. High abundance and diversity of antibiotic resistance genes (ARG) were identified in the MAG, likely showing the wide use of antibiotics in the management of horse. The abundances of at least 36 MAG (e.g. MAG belonging to Lachnospiraceae, Oscillospiraceae, and Ruminococcus) were higher in racehorses than in nonracehorses. These MAG enriched in racehorses contained every gene in a major pathway for producing acetate and butyrate by fibre fermentation, presenting potential for greater amount of short-chain fatty acids available to fuel athletic performance. CONCLUSION: Overall, we assembled 4142 MAG from short- and long-read sequence data in the horse gut. Our dataset represents an exhaustive microbial genome catalogue for the horse gut microbiome and provides a valuable resource for discovery of performance-enhancing microbes and studies of horse gut microbiome. Video Abstract.


Assuntos
Desempenho Atlético , Microbioma Gastrointestinal , Cavalos/genética , Humanos , Animais , Metagenoma , Genoma Bacteriano , Microbioma Gastrointestinal/genética , Resistência Microbiana a Medicamentos , Metagenômica
8.
Anim Biotechnol ; 34(2): 218-224, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34346290

RESUMO

For revealing molecular markers related to the traits of multiple lumbar vertebrae in sheep, we analyze the relationship between NR6A1 gene polymorphism and lumbar vertebrae number traits in Xinjiang Kazakh sheep. Lumbar muscle tissues were collected from 6-lumbar spine (L6) Kazak sheep and 7-lumbar spine (L7) Kazak sheep and the intron-8 of NR6A1 gene was amplified by PCR. The SNP locus was detected by the PCR-SSCP method. One-Way ANOVA and an Independent Chi-square Test is adopted to analyze the genotype association with lumbar spine number variation. There were two SNP loci in the intron-8 of the NR6A1 gene: IVS8-188 and IVS8-281. One-Way ANOVA and Independent Chi-square Test indicated a significant association between IVS8-281 and lumbar spine number. The SNP locus of NR6A1 gene intron 8 (IVS8-281G > A) could play a certain role in the variation of lumbar spine number in Xinjiang Kazakh sheep and demonstrates potential to accelerate the sheep breeding of selection process.


Assuntos
Vértebras Lombares , Polimorfismo Genético , Animais , Ovinos , Íntrons , Fenótipo , Genótipo
9.
Nucleic Acids Res ; 51(D1): D700-D707, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36318246

RESUMO

CRAMdb (a database for composition and roles of animal microbiome) is a comprehensive resource of curated and consistently annotated metagenomes for non-human animals. It focuses on the composition and roles of the microbiome in various animal species. The main goal of the CRAMdb is to facilitate the reuse of animal metagenomic data, and enable cross-host and cross-phenotype comparisons. To this end, we consistently annotated microbiomes (including 16S, 18S, ITS and metagenomics sequencing data) of 516 animals from 475 projects spanning 43 phenotype pairs to construct the database that is equipped with 9430 bacteria, 278 archaea, 2216 fungi and 458 viruses. CRAMdb provides two main contents: microbiome composition data, illustrating the landscape of the microbiota (bacteria, archaea, fungi, and viruses) in various animal species, and microbiome association data, revealing the relationships between the microbiota and various phenotypes across different animal species. More importantly, users can quickly compare the composition of the microbiota of interest cross-host or body site and the associated taxa that differ between phenotype pairs cross-host or cross-phenotype. CRAMdb is freely available at (http://www.ehbio.com/CRAMdb).


Assuntos
Bases de Dados Factuais , Microbiota , Animais , Archaea/genética , Bactérias/genética , Fungos/genética , Metagenoma , Metagenômica , Microbiota/genética
10.
Sci Data ; 9(1): 312, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710683

RESUMO

With the rapid development of high-throughput sequencing technology, the amount of metagenomic data (including both 16S and whole-genome sequencing data) in public repositories is increasing exponentially. However, owing to the large and decentralized nature of the data, it is still difficult for users to mine, compare, and analyze the data. The animal metagenome database (AnimalMetagenome DB) integrates metagenomic sequencing data with host information, making it easier for users to find data of interest. The AnimalMetagenome DB is designed to contain all public metagenomic data from animals, and the data are divided into domestic and wild animal categories. Users can browse, search, and download animal metagenomic data of interest based on different attributes of the metadata such as animal species, sample site, study purpose, and DNA extraction method. The AnimalMetagenome DB version 1.0 includes metadata for 82,097 metagenomes from 4 domestic animals (pigs, bovines, horses, and sheep) and 540 wild animals. These metagenomes cover 15 years of experiments, 73 countries, 1,044 studies, 63,214 amplicon sequencing data, and 10,672 whole genome sequencing data. All data in the database are hosted and available in figshare https://doi.org/10.6084/m9.figshare.19728619 .


Assuntos
Bases de Dados Factuais , Metagenoma , Animais , Bovinos , Sequenciamento de Nucleotídeos em Larga Escala , Cavalos , Metadados , Metagenômica , Ovinos , Suínos
11.
Virology ; 569: 56-63, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35276485

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) kappa (B.1.617.1) variant represented the main variant of concern (VOC) for the epidemic in India in May 2021. We have previously established a technology platform for rapidly preparing SARS-CoV-2 receptor-binding domain (RBD) candidate vaccines based on glycoengineered Pichia pastoris. Our previous study revealed that the wild-type RBD (WT-RBD) formulated with aluminum hydroxide and CpG 2006 adjuvant effectively induces neutralizing antibodies in BALB/c mice. In the present study, a glycoengineered P. pastoris expression system was used to prepare recombinant kappa-RBD candidate vaccine. Kappa-RBD formulated with CpG and alum induced BALB/c mice to produce a potent antigen-specific antibody response and neutralizing antibody titers against pseudoviruses of SARS-CoV-2 kappa, delta, lambda, beta, and omicron variants and WT. Therefore, the recombinant kappa-RBD vaccine has sufficient potency to be a promising COVID-19 vaccine candidate.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Receptores Opioides kappa , SARS-CoV-2/genética , Saccharomycetales , Glicoproteína da Espícula de Coronavírus/química , Vacinas Sintéticas/genética
12.
Comput Struct Biotechnol J ; 20: 891-898, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222847

RESUMO

Animal gut microbiomes play important roles in the health, diseases, and production of animal hosts. The volume of animal gut metagenomic data, including both 16S amplicon and metagenomic sequencing data, has been increasing exponentially in recent years, making it increasingly difficult for researchers to query, retrieve, and reanalyze experimental data and explore new hypotheses. We designed a database called the domestic animal gut microbiome atlas (ADDAGMA) to house all publicly available, high-throughput sequencing data for the gut microbiome in domestic animals. ADDAGMA enhances the availability and accessibility of the rapidly growing body of metagenomic data. We annotated microbial and metadata from four domestic animals (cattle, horse, pig, and chicken) from 356 published papers to construct a comprehensive database that is equipped with browse and search functions, enabling users to make customized, complicated, biologically relevant queries. Users can quickly and accurately obtain experimental information on sample types, conditions, and sequencing platforms, and experimental results including microbial relative abundances, microbial taxon-associated host phenotype, and P-values for gut microbes of interest. The current version of ADDAGMA includes 290,422 quantification events (changes in abundance) for 3215 microbial taxa associated with 48 phenotypes. ADDAGMA presently covers gut microbiota sequencing data from pig, cattle, horse, and chicken, but will be expanded to include other domestic animals. ADDAGMA is freely available at (http://addagma.omicsbio.info/).

13.
Carbohydr Polym ; 280: 119001, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35027136

RESUMO

This study found two novel homogeneous polysaccharides from Angelica sinensis, APS-1I and APS-2II, binding to RAGE with a dissociation constant of 2.02 ± 0.2 and 85.92 ± 0.2 µM, respectively. APS-1I is a 17.0 kDa heteropolysaccharide, whose backbone is composed of α-1,6-Glcp, α-1,3,6-Glcp, α-1,2-Glcp, α-1,4-Galp, and α-1,3-Rhap, and whose two branches contain α-1,3,5-Araf, α-1,3-Araf, α-1,4-Galp, ß-1,3-Galp, and ß-1,4-Glcp. APS-2II is a 10.0 kDa linear glucan, that contains α-1,6-Glcp, α-1,3-Glcp, α-1,2-Glcp, and α-T-Glcp. In vitro, APS-1I demonstrated better promotion on glucose absorption and stronger repression on p-IRS-1 (Ser307), p-IRS-2 (Ser731), p-JNK, and p-P38 than APS-2II in insulin resistance (IR)-HepG2 cells. Furthermore, APS-1I treatment couldn't further decrease the inhibition on the phosphorylation of JNK and P38 produced by RAGE siRNA in IR-HepG2 cells. In vivo, APS-1I markedly improved IR and reversed the livers RAGE-JNK/p38-IRS signaling in high-fat-diet and streptozotocin-induced diabetic rats, suggesting that APS-1I could be a potential agent for improving IR in type 2 diabetes.


Assuntos
Angelica sinensis/química , Resistência à Insulina , Fígado/metabolismo , Polissacarídeos/química , Polissacarídeos/farmacologia , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Animais , Sequência de Carboidratos , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Células Hep G2 , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Janus Quinases/metabolismo , Fígado/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases , Masculino , Polissacarídeos/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor para Produtos Finais de Glicação Avançada/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
Acta Pharmacol Sin ; 43(4): 829-839, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34272506

RESUMO

Sulforaphane (SFN) is an organic isothiocyanate and an NF-E2-related factor-2 (Nrf2) inducer that exerts prophylactic effects on depression-like behavior in mice. However, the underlying mechanisms remain poorly understood. Brain-derived neurotrophic factor (BDNF), a neurotrophin, is widely accepted for its antidepressant effects and role in stress resilience. Here, we show that SFN confers stress resilience via BDNF upregulation and changes in abnormal dendritic spine morphology in stressed mice, which is accompanied by rectifying the irregular levels of inflammatory cytokines. Mechanistic studies demonstrated that SFN activated Nrf2 to promote BDNF transcription by binding to the exon I promoter, which is associated with increased Nrf2, and decreased methyl-CpG binding protein-2 (MeCP2), a transcriptional suppressor of BDNF, in BV2 microglial cells. Furthermore, SFN inhibited the pro-inflammatory phenotype and activated the anti-inflammatory phenotype of microglia, which was associated with increased Nrf2 and decreased MeCP2 expression in microglia of stressed mice. Hence, our findings support that Nrf2 induces BDNF transcription via upregulation of Nrf2 and downregulation of MeCP2 in microglia, which is associated with changes in the morphology of damaged dendritic spines in stressed mice. Meanwhile, the data presented here provide evidence for the application of SFN as a candidate for the prevention and intervention of depression.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Microglia , Animais , Anti-Inflamatórios/farmacologia , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Isotiocianatos/farmacologia , Isotiocianatos/uso terapêutico , Camundongos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Sulfóxidos
15.
Gene ; 809: 146020, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34656743

RESUMO

Multi-lumbar vertebrae trait is a beneficial mutation that can significantly improve livestock meat production. However, the genetic basis of the multi-lumbar vertebrae in sheep is still unclear. Here, we analysed the number of lumbar vertebrae of Duolang sheep and found three different traits of lumbar vertebrae number. Compared with the normal sheep, the length and weight of animal carcass from the multi-lumbar vertebrae sheep increased by 2.21 cm and 0.78 kg, respectively. We performed high-throughput genome resequencing on multi-lumbar vertebrae (n = 18) and normal (n = 11) Duolang sheep and obtained a total of more than 528.87 GB data. We found that the most significantly selective region were located in the 49.68-49.74 MB of chromosome 4 by selective-sweep analysis. We annotated this region and found that it contains SFRP4 which is known to regulate bone development. We further used the PCR-SSCP technology to detect the single nucleotide polymorphism (SNP) of the putative candidate SFRP4 and found that the two SNPs (rs600370085:C > T and rs415133338: A > G) of this gene were significantly associated with the multi-lumbar vertebrae of Duolang sheep. Our study indicates that the SFRP4 may be a potential major gene that affects the number of lumbar vertebrae in Duolang sheep, and has the potential to be utilized for sheep breeding in the future.


Assuntos
Vértebras Lombares/fisiologia , Polimorfismo de Nucleotídeo Único , Carneiro Doméstico/genética , Animais , China , Estudo de Associação Genômica Ampla , Reação em Cadeia da Polimerase , Polimorfismo Conformacional de Fita Simples , Proteínas Proto-Oncogênicas/genética
16.
Int J Stem Cells ; 14(4): 423-433, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34456193

RESUMO

BACKGROUND AND OBJECTIVES: Sheep-induced pluripotent stem cells (siPSCs) have low reprogramming efficiency, thereby hampering their use in biotechnology and agriculture. Several studies have shown that some microRNAs play an important role in promoting somatic reprogramming in mouse and human. In this study, we investigated the effect of miR-200c-141 on somatic reprogramming in sheep and explored the mechanism of promoting the reprogramming. METHODS AND RESULTS: The lentivirus system driven by tetracycline (TET)-on carrying Oct4, Sox2, c-Myc, Klf4, Nanog, Lin28, hTERT, and SV40LT (OSKMNLST) could reprogram sheep kidney cells into pluripotent cells. Overexpression of miR-200c-141 in combination with OSKMNLST could significantly improve the efficiency of sheep iPSC generation (p<0.01). Sheep iPSCs derived from miR-200c-141 showed embryonic stem cell (ESC)-like pluripotent properties, were positive for alkaline phosphatase and some pluripotent markers by quantitative real-time PCR (qRT-PCR) and immunofluorescence, and were able to differentiate into three germ layers in vitro. Oar-miR-200c was transfected into HEK293FT cells and was able to target the zinc finger E-box-binding homeobox 1 (ZEB1) 3'UTR using dual luciferase reporting analysis. Overexpression of oar-miR-200c in SKCs significantly reduced the expression of ZEB1, but increased the expression of E-cadherin by qRT-PCR and western blotting analysis. CONCLUSIONS: These results suggest that miR-200c-141 can promote the reprogramming of sheep somatic cells to iPSCs, and oar-miR-200c targeted ZEB1 3'UTR, significantly decreased expression of ZEB1, and increased expression of E-cadherin. Oar-miR-200c may improve the MET process by affecting the TGF-ß signaling pathway, thus improving the efficiency of somatic cell reprogramming in sheep.

17.
Mol Cell Biochem ; 476(12): 4245-4263, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34351574

RESUMO

Kawasaki disease (KD) causes cardiovascular system injury in children. However, the pathogenic mechanisms of KD have not been well defined. Recently, strong correlation between aberrant microRNAs and KD nosogenesis has been revealed. A role of microRNA-197-3p (miR-197-3p) in the pathogenesis of KD is identified in the present study. Cell proliferation assay showed human coronary artery endothelial cells (HCAECs) were suppressed by serum from KD patients, which was correlated with high levels of miR-197-3p in both KD serum and HCAECs cultured with KD serum. The inhibition of HCAECs by miR-197-3p was confirmed by cells expressing miR-197-3p mimic and miR-197-3p inhibitor. Comparative proteomics analysis and Ingenuity Pathway Analysis (IPA) revealed TIMP3 as a potential target of miR-197-3p, which was demonstrated by western blot and dual-luciferase reporter assays. Subsequently, by detecting the endothelium damage markers THBS1, VWF, and HSPG2, the role of miR-197-3p/TIMP3 in KD-induced damage to HCAECs was confirmed, which was further validated by a KD mouse model in vivo. The expressions of miR-197-3p and its target, TIMP3, are dramatically variational in KD serum and HCAECs cultured with KD serum. Increased miR-197-3p induces HCAECs abnormal by restraining TIMP3 expression directly. Hence, dysregulation of miR-197-3p/TIMP3 expression in HCAECs may be an important mechanism in cardiovascular endothelium injury in KD patients, which offers a feasible therapeutic target for KD treatment.


Assuntos
Doença da Artéria Coronariana/patologia , Células Endoteliais/patologia , MicroRNAs/genética , Síndrome de Linfonodos Mucocutâneos/patologia , Proteoma/metabolismo , Inibidor Tecidual de Metaloproteinase-3/antagonistas & inibidores , Animais , Apoptose/fisiologia , Células Cultivadas , Pré-Escolar , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/imunologia , Doença da Artéria Coronariana/metabolismo , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Feminino , Humanos , Lactente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/sangue , Síndrome de Linfonodos Mucocutâneos/etiologia , Síndrome de Linfonodos Mucocutâneos/metabolismo , Proteoma/análise , Inibidor Tecidual de Metaloproteinase-3/genética , Inibidor Tecidual de Metaloproteinase-3/metabolismo
18.
Virol J ; 18(1): 119, 2021 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-34092256

RESUMO

BACKGROUND: Bovine viral diarrhea (BVD) which is caused by Bovine viral diarrhea virus (BVDV), is an acute, contagious disease. In spite of the use of vaccines and elimination projects, BVDV still causes severe economic losses to the cattle industry for the past few years. The current study presents a preliminary analysis of the pathogenic mechanisms from the perspective of protein expression levels in infected host cells at different points in time to elucidate the infection process associated with BVDV. METHODS: We used the isobaric tags for relative and absolute quantitation (iTRAQ) technology coupled with liquid chromatography-tandem mass spectrometric (LC-MS/MS) approach for a quantitative proteomics comparison of BVDV NADL-infected MDBK cells and non-infected cells. The functions of the proteins were deduced by functional annotation and their involvement in metabolic processes explored by KEGG pathway analysis to identify their interactions. RESULTS: There were 357 (47.6% downregulated, 52.4% upregulated infected vs. control), 101 (52.5% downregulated, 47.5% upregulated infected vs. control), and 66 (21.2% downregulated, 78.8% upregulated infected vs. control) proteins were differentially expressed (fold change > 1.5 or < 0.67) in the BVDV NADL-infected MDBK cells at 12, 24, and 48 h after infection. GO analysis showed that the differentially expressed proteins (DEPs) are mainly involved in metabolic processes, biological regulation and localization. KEGG enrichment analysis showed that some signaling pathways that involved in the regulation of BVDV NADL-infection and host resistance are significantly (P < 0.05) enriched at different stages of the BVDV NADL-infection, such as Endocytosis signaling pathway, FoxO signaling pathway, Homologous recombination signaling pathway and Lysosome pathway. CONCLUSIONS: These results revealed that the DEPs in BVDV NADL-infected MDBK cells have a wide range of regulatory effects; in addition, they provide a lot of resources for the study of host cell proteomics after BVDV infection.


Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina , Vírus da Diarreia Viral Bovina , Proteoma , Animais , Bovinos , Linhagem Celular , Cromatografia Líquida , Diarreia , Proteômica , Espectrometria de Massas em Tandem
19.
Front Vet Sci ; 8: 603919, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34179152

RESUMO

Bovine Viral Diarrhea Virus (BVDV) is the main pathogen of bovine viral diarrhea disease (BVD), which leads to enormous economic losses in the cattle industry. A sensitive and specific detection for BVDV is advantageous to the control of BVDV. Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems have been used for detecting virus RNA. In this study, the expression and purification of LwCas13a protein was optimized and the RNase activity of LwCas13a in vitro was verified. CRISPR-LwCas13a system could detect BVDV virus and BVDV RNA with high specificity and simplicity. The detection limit of the LwCas13a system was 103 pM, and there were no cross-reactions with HEK293T and MDBK. In summary, a sensitive, specific, and simple nucleic acid detection method based on CRISPR-Cas13a was developed for BVDV. This method provides a new detection strategy for early diagnosis of BVDV.

20.
Mol Plant Microbe Interact ; 34(8): 981-986, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33779267

RESUMO

Meloidogyne chitwoodi is one of the most devastating pests of potato in the U.S. Pacific Northwest (PNW). Nematode-infected tubers develop external as well as internal defects, making the potato tubers unmarketable, and resulting in economic losses. Draft genome assemblies of three M. chitwoodi genotypes-race 1, race 2 and race 1 pathotype Roza-were generated using Illumina and PacBio Sequel RS II sequencing. The final assemblies consist of 30, 39, and 38 polished contigs for race 1, race 2 and race 1 pathotype Roza, respectively, with average N50 of 2.37 Mb and average assembled genome size of approximately 47.41 Mb. On average, 10,508 genes were annotated for each genome. Benchmarking universal single-copy ortholog (BUSCO) analysis indicated that 69.80% of the BUSCOs were complete whereas 68.80, 0.93, and 12.67% were single copy, duplicated, and fragmented, respectively. These highly contiguous genomes will enrich resources to study potato-nematode interactions and enhance breeding efforts to develop nematode-resistant potato varieties for the PNW.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Solanum tuberosum , Tylenchoidea , Animais , Tamanho do Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Melhoramento Vegetal , Solanum tuberosum/genética , Tylenchoidea/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...